CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC)

NORTHEN ZONE JOINT EXAMINATIONS SYNDICATE (NZJES)

FORM FOUR PRE-NATIONAL EXAMINATIONS AUGUST 2024

CHEMISTRY 2A

ACTUAL PRACTICAL A

MARKING SCHEME

Question No. 1

Provided Solutions and materials;

- (i) **R:** Solution containing 18.25g of hydrochloric acid (HCl) in 0.5 dm³ of solution
- (ii) S: Solution containing 14.30g of hydrated Sodium Carbonate (Na₂CO₃. xH₂O) in 1 dm³ of solution.

(iii) **Indicators**: Methyl Orange (MO)

Table of results (Titration data)

TITRATION/Burette Readings	PILOT	1	2	3
Final reading (cm ³)	21.60	41.70	22.00	41.90
Initial reading (cm ³)	1.00	21.60	2.00	22.00
Volume of Acid used (Va) (cm ³)	20.60	20.10	20.00	19.90

Correct data entry in the above table 05 Marks.

QUESTIONS

(a) Calculate the average volume of the acid solution used in this experiment.

$$V_{a} = (20.10 + 20.00 + 19.90) \text{ cm}^{3}$$

$$V_{a} = \frac{60.00}{3} \text{ cm}^{3} = 20.00 \text{ cm}^{3}$$
(01 Mark)

Summary;

20.00 cm³ of solution R1 required **20.00** cm³ of solution S for complete neutralization reaction.

(01 Mark)

(b) Name of indicator: Methyl Orange (MO) (0.5 Mark)

Reason:

The neutralization reaction was between HCl (strong acid) and Weak base (Na₂CO₃)

(0.5 Mark)

(c) The color change at the end point was from Yellow to Orange-Red

(01 Mark)

(d) Balanced chemical equation for the reaction between solution R1 and S.

$$2\text{HCl}(aq) + \text{Na}_2\text{CO}_3(aq) \longrightarrow 2\text{NaCl}(s) + \text{CO}_2(g) + \text{H}_2\text{O}(l)$$

(e) Calculate concentration of acid Solution R

(i) concentration of acid Solution R in (i) gdm⁻³

From the given information above;

Soln R contains: 18.25g of (HCl) acid in 0.5 dm³ of solution

i.e. $18.25g = 0.5 \text{ dm}^3$ $xg = 1.0 \text{dm}^3$ (0.5 Mark)

$$x = 18.25g \times 1.0dm^3$$

0.5dm³

$$x = 36.5 \text{g/dm}^{3}$$
therefore, concentration of acid Solution R in (a) gdm⁻³ = 36.5 g/dm³ (01Mark)

(ii) Concentration of acid Solution R in moles/dm³

Note: This is same as finding Molarity of given acid solution

We use formula;

$$= \frac{36.5 \text{g/dm}^3}{36.5 \text{g/mol}} = 1.00 \text{ moles/dm}^3$$

Concentration/Molarity soln R HCl acid = 1.0M or 1.00 moles/dm³ (1 Mark)

(f) Calculate concentration of acid Solution R1 in

(i) moles/dm³ concentration of acid Solution R1 in gdm⁻³

Given Data:

Molarity of Conc acid (Mc) = 1.0MVolume of Conc. acid (Vc) = 10 cm^3 Volume of dilution (Vd) = 100 cm^3 Molarity of diluted acid (Md) = ? (0.5 Marks)

Then we use Dilution law to get concentration of acid R1 in moles/dm³

Mc.Vc = Md.Vd

Making Md the subject of the formula

$$Md = \frac{Mc.Vc}{Vd} \qquad Md = \frac{1M \times 10 \text{ cm}^3}{100 \text{ cm}^3} = 0.1 \text{ moles/dm}^3$$

(0.5 Mark)

Therefore; Concentration of acid Solution R1 = 0.1 moles/dm³

(1 Mark)

(ii) To calculate concentration of acid Solution R1 in gdm⁻³

We use the formula;

Concentration of R1 (HCl) = Molarity of R1 (HCl) x Molar mass (HCl) = 0.1moles/dm³ x 36.5g/mol = 3.65 g/dm³ Thus; concentration of acid Solution R1 in gdm⁻³ = 3.65 g/dm³ (1 Mark)

- (g) Compute the following;
 - (i) Molarity of hydrated Sodium Carbonate (Na₂CO₃. xH₂O) in solution S

Here we use the following information

Molarity of acid (Ma)	= 0.1 M	
Volume of acid (Va)	$= 20.00 \text{ cm}^3$	
Number of acid (na) From balanced eqn in (iii) above	= 2	
Number of base (nb) From balanced eqn in (iii) above	= 1	(0.5 Mark)

From formula;

Ma.Va.nb = Mb.Vb.na

Mb	=	<u>Ma.Va.nb</u> Vb.na (0.5 Marl	ks)
Mb	=	$\frac{0.1M \ge 20.00 \text{cm}^3 \ge 1}{20.00 \text{cm}^3 \ge 2}$	
Mb	=	0.05 M or 0.05 moles/dm ³	(1 Mark)

Thus;

Molarity of hydrated Sodium Carbonate (Na₂CO₃. xH_2O) in solution S = 0.05 M or 0.05 moles/dm³

(ii) Value of \mathbf{x} in hydrated Sodium Carbonate (Na₂CO₃. \mathbf{x} H₂O) in solution S

To get value of x in Na₂CO₃. xH_2O we must calculate its Molar mass (g/mol).

Form the information given when the solution was prepared; Concentration of Na₂CO₃. \mathbf{x} H₂O = 14.30 g/dm³

We use the formula;

$\frac{\text{Molarity of S}}{\text{(Na2CO3.xH2O)}} = \frac{\text{Concentration in g/dm}^3}{\text{Molar mass}}$			
Molar mass (Na2CO3.xH2O)	=	Concentration g/dm ³ Molarity (moles/dm ³)	(0.5 Mark)
	=	$\frac{14.30 \text{g/dm}^3}{0.05 \text{ moles/dm}^3}$	
	=	286g/mol	(0.5 MARK)

Molar mass of $Na_2CO_3.xH_2O = 286g/mol.$

$$Na_{2}CO_{3}.xH_{2}O = 286$$

$$(23 x 2) + 12 + (16 x 3) + x[(1x2)+10] = 286$$

$$46 + 12 + 48 + 18x = 286$$
(0.5 Mark)

106 + 18x = 286 18x = 286 - 18018x = 180

Dividing by 18 both sides, gives

Х	=	<u>180</u>	
		18	

 $\mathbf{x} = 10 \qquad (1 \, \mathbf{Mark})$

thus; chemical formula for hydrated sodium carbonate is Na₂CO₃. 10H₂O

(iii) Percentage of water of crystallization in hydrated Sodium Carbonate (Na₂CO₃. xH₂O)

% of water of crystallization in Na₂CO₃. $10H_2O = 180 \times 100 = 62.9371$ % (0.5 MARKS) 286

% of water of crystallization in Na_2CO_3 . $10H_2O = 62.94\%$ (01 Mark)

H) Effect if each of the following conditions were applicable in this experiment;

- (I) The pipette used was not rinsed with sodium carbonate
 There could be water impurities which could affect the concentration of the base solution by lowering it. (01 Mark)
- (II) The air space in the burette tip was not removed before titration.
 Air space in the burette could affect the concentration of acid solution by lowering its volume.. (01 Mark)

Question No. 2

Table	1
-------	---

Experiment No	Volume of V (HNO ₃) (cm ³)	Volume of U (Na ₂ S ₂ O ₃) (cm ³)	Volume of distilled water (cm ³)	Concentration of U (Na ₂ S ₂ O ₃) (moles/dm ³)	Time (s)	Rate (s ⁻¹)
(i)	10	10	0			
(ii)	10	8	2			
(iii)	10	6	4			
(iv)	10	4	6			

Questions

a) Complete (fill) blank columns in Table 1 above

(06 Marks)

b) (i) To write a net ionic equation for the reaction between solution U and V

Ionic equation is usually written in five steps as follows;

```
@ step 01 = 05 Marks
```

Step 1: writing chemical equations in words

Nitric acid reacts with sodium thiosulphate to form sodium nitrate, sulphur, sulphur dioxide and water.

Step 2: Equation in chemical symbols and balancing it.

 $2HNO_3(aq) + Na_2S_2O_3(aq) \longrightarrow 2NaNO_3(aq) + S_{(s)} + SO_{2(g)} + H_2O_{(l)}$

Step 3: Splitting all soluble ionic compounds into individual ions

 $2H^{+}(aq) + 2NO_{3}^{-}(aq) + 2Na^{+}(aq) + 2S_{2}O_{3}^{-}(aq) \longrightarrow 2Na^{+}(aq) + 2NO_{3}^{-}(aq) + S_{(s)} + SO_{2(g)} + H_{2}O_{(l)} + H_{$

Step 4: Cancel out spectator ions

 $2H^{+}(aq) + 2NO_{3}^{-}(aq) + 2NO_{3}^{-}(aq) + 2S_{2}O_{3}^{-}(aq) \longrightarrow 2NO_{3}^{+}(aq) + 2NO_{3}^{-}(aq) + S_{(s)} + S_{(s)} + S_{(s)} + H_{2}O_{(l)} + H_$

Step 5: Writing the net ionic equation $2H^+(aq) + 2S_2O_3^-(aq) \longrightarrow S_{(s)} + SO_{2(g)} + H_2O_{(l)}$

(ii) The name of product which causes the solution to cloud letter X is Sulphur

(01 Mark)

c) (i) Plot the graph of Volume of $Na_2S_2O_3$ solution against Rate (s⁻¹)

The nature of graph

Volume (cm ³) of $Na_2S_2O_3$ solution against Rate (s ⁻¹)	(02 Marks)
-------------------------	--	------------

Things to Note:

\triangleright	Title of the graph (with its respective units)	(01 MARK)
\triangleright	Correct labeled axes (with units)	(01 MARKS)

Scale: (Horizontal and Vertical scale) – with respective units (02 MARKS)

(ii) Conclusion to be drawn from the graph aboveDecrease in concentration of Sodium thiosulphate solution decreases the rate of chemical reaction and vice versa. (01.5 Mark)

d) The aim of this experiment was to *demonstrate the effect of concentration on the rate of chemical reaction for the reaction between* Na₂S₂O₃ *solution and* HNO₃ *acid.*

(01.5 Mark)

e) Two (2) possible sources of errors that might hinder this experiment and in each case, state how to overcome the error.

Any two errors: $@ error = 01 \times 2 = 02$ Marks

@ control measure	e 01 x 2	= 02 Marks
-------------------	----------	------------

Source of error	How to overcome/ correct
(i) Water droplets or remains	- Make sure all impurities from
(impurities) on vessels like	vessels are removed/emptied
beaker, measuring cylinder.	completely.
(ii) Delay in starting and or stopping stop watch during experiment.	- Make sure stop watch is started and stopped carefully (on time) as reaction starts or ends.
(iii) Use of dirty or broken apparatus	 Never use dirty or broken
like measuring cylinder.	apparatus